
Gauge invariance in quantum mechanics: charged harmonic oscillator in the magnetic dipole

approximation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 521

(http://iopscience.iop.org/0305-4470/16/3/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math. Gen. 16 (1983) 521-533. Printed in Great Britain 

Gauge invariance in quantum mechanics: charged 
harmonic oscillator in the magnetic dipole approximation? 

Paul K Kennedy and Donald H Kobe 
Department of Physics, North Texas State University, Denton, Texas 76203, USA 

Received 29 June 1982, in final form 25 August 1982 

Abstract. A manifestly gauge-invariant formulation of quantum mechanics is applied to 
a charged isotropic harmonic oscillator in a time-varying magnetic field in the magnetic 
dipole approximation. The energy operator for the problem is the sum of the kinetic and 
potential energies. The kinetic energy operator is the square of the  gauge-invariant kinetic 
momentum operator divided by twice the mass. The energy eigenvalues and state prob- 
abilities are calculated and are shown to be the same in all gauges. In this problem there 
is no gauge in which the energy operator reduces to the unperturbed Hamiltonian, as 
there is in the electric dipole approximation. Consequently, eigenvalues of the unperturbed 
Hamiltonian and corresponding (gauge-dependent) state ‘probabilities’ are different from 
the gauge-invariant quantities in all gauges. 

1. Introduction 

One of the most fundamental principles of physics is gauge invariance. Only recentlq, 
however., has a manifestly gauge-invariant formulation of the quantum mechanics of 
a charged particle interacting with a time-varying classical electromagnetic field been 
given (Yang 1976, Kobe 1978, Kobe and Smirl 1978, Kobe and Yang 1980). In this 
formulation the eigenvalue problem for the gauge-invariant energy operator is solved 
to give the appropriate energy eigenvalues and eigenstates. The energy operator is 
the sum of the kinetic and potential energy operators. The kinetic energy is the kinetic 
or mechanical momentum operator squared divided by twice the mass. The kinetic 
or mechanical momentum is p -qA/c, where p = -ihV is the canonical momentum 
operator, A is the vector potential, q is the charge and c is the speed of light, which 
has a gauge-invariant expectation value. The kinetic momentum operator and con- 
sequently the kinetic energy operator depend on the time if the vector potential 
depends on time. Therefore the energy eigenvalues and eigenstates in general depend 
on the time as a parameter. 

To  illustrate the gauge-invariant approach to quantum mechanics, Kobe and Wen 
(1980, 1982) solved the Schrodinger equation exactly for a charged harmonic oscillator 
in an electromagnetic field in the electric,dipole approximation. Questions of principle 
could thus be separated from approximations. They calculated the probabilities of 
finding the oscillator in excited states as a function of time, if the oscillator was initially 
in the ground state. These probabilities were compared with those calculated from a 
conventional approach (Schiff 1968 (pp 398-403), Merzbacher 1970 (pp 451-63)) 
using the unperturbed Hamiltonian Ho and the conventional interaction p - A plus 
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A ‘ p  plus A’ (constants omitted), The probabilities were different as long as the 
electric field remained on and the principle of gauge invariance implies that the 
probabilities calculated in the gauge-invariant way are correct. 

The gauge-invariant approach can be used in any gauge. However, in the electric 
dipole approximation there is a gauge, called the electric field gauge, in which the 
vector potential is zero and the scalar potential is - E  r ,  where E is the electric field 
and r is the displacement of the electron, In this gauge the kinetic momentum reduces 
to the canonical momentum and the energy operator reduces to the unperturbed 
Hamiltonian Ho. The calculations are simplified in this gauge. Because the energy 
operator reduces to the unperturbed Hamiltonian in the electric field gauge, the 
distinction between these two operators has not been appreciated (Aharonov and Au 
1981). 

To  avoid any misunderstanding of the gauge-invariant formulation, it is desirable 
to find a model in which the energy operator does not reduce to the unperturbed 
Hamiltonian in any gauge. Such a model is the charged isotropic harmonic oscillator 
in the magnetic dipole approximation (MDA), in which the magnetic field is varying 
in time. The energy eigenvalue equation for this problem can be solved exactly, 
alfhough the time-dependent Schrodinger equation can be solved only approximately. 
The standard approaches to this problem use perturbation theory when the magnetic 
field is rapidly varying in time but weak or use eigenstates of the total Hamiltonian 
when the magnetic field is strong but slowly (adiabatically) varying in time (Schiff 
1968, pp 289-90). The gauge-invariant procedure can be applied in principle when 
the magnetic field is both rapidly varying and strong. 

In most magnetic field problems a static magnetic field is applied to ‘quantise’ the 
energy levels, and a weak time-varying magnetic (or electromagnetic) field is used as 
a probe (Bergou and Ehlotzky 1982, Bergou and Varr6 1982). When the magnetic 
field is both strong and time varying, the same field acts as the quantising and probe 
field (Anosov 1980). This magnetic field ‘quantises’ the energy levels and shifts them 
due to a dynamic or AC Zeeman effect (Gallagher and Cocker 1979). The energy 
eigenvalues are ‘dressed’ by the time-varying magnetic field. The same field ‘probes’ 
the system by inducing transitions between the ’dressed’ eigenstates. The gauge- 
invariant procedure is thus able to deal with a new class of problems, which is 
illustrated here with the harmonic oscillator in the MDA. The energy eigenvalues and 
state probabilities calculated using the gauge-invariant energy operator are different 
from those calculated in any gauge using the unperturbed Hamiltonian while the 
magnetic field remains on. 

In § 2 the gauge-invariant formulation of quantum mechanics is reviewed briefly. 
The gauge-invariant solution of the charged harmonic oscillator in the MDA is given 
in 0 3. The conventional approach is reviewed in § 4 and applied to the charged 
harmonic oscillator in the MDA in § 5. The conclusions are given in 5 6. 

2. Gauge-invariant formulation 

In this section the gauge-invariant formulation of quantum mechanics (Yang 1976, 
Kobe 1978, Kobe and Smirl 1978) is reviewed. After a brief discussion of the gauge 
invariance of the Schrodinger equation, the energy operator is defined and the energy 
eigenvalue equation is discussed. The probability amplitudes for finding the system 
in energy eigenstates are defined and their equation of motion is obtained. 
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2.1. Gauge invariance of the Schrodinger equation 

The Hamiltonian for a charged particle of mass m and charge q interacting with an 
electromagnetic field characterised by vector potential A and scalar potential A. is 

1 
2m 

H(A,  Ao) = - ( p  - qA/C)* + V + qAo (2.1) 

where p = -iAV is the canonical momentum operator. The potential energy V is pre- 
scribed for the problem, and is due to a static external field. Since the field is 
conservative, the potential energy is unique up to a constant. The scalar potential A. 
and the vector potential A are associated with a time-varying electromagnetic field 
and a static magnetic field, if present. Since a static electric field is a conservative 
field, its potential is included in V. The vector and scalar potentials are related to 
the magnetic induction field by B = V x Aand the electric field by E = -VAo - 
aA/a(ct), as usual. The Schrodinger equation for the particle is 

H ( A ,  Ao)4  = iAa$/at. (2.2) 

Using the gauge function A, which is a function of space and time, we can make 
a gauge transformation on the wavefunction: 

4' = exp(iqA/fic)+. (2.3) 

The corresponding gauge transformation of the potentials is 

A '  = A -+ Vh 
and 

AA = A0 - a A / d ( ~ t ) .  

(2.4) 

If equations (2.3), (2.4) and (2.5) are solved for 4, A and Ao,  respectively, and 
substituted into equation (2.2), we obtain the new Schrodinger equation 

H(A' ,  Ab)4' = iha$'/at. (2.6) 

The Schrodinger equation is therefore form invariant under gauge transformations. 

2.2. Energy eigenvalue equation 

An operator is gauge invariant if its expectation value is the same in all gauges. The 
Hamiltonian H ( A ,  Ao) in equation (2.1) has a gauge-dependent expectation value, 
so it cannot be the energy. However, a gauge-invariant energy operator g ( A )  can 
be defined as (Yang 1976, Kobe 1978) 

1 
2m 

8 (A) = - (p - qA / c ) ~  + V, (2.7) 

which is the Hamiltonian in equation (2.1) minus the scalar potential term qAo. 
Equation (2.7) is the kinetic energy plus the potential energy. The kinetic energy is 
the square of the gauge-invariant kinetic momentum p -qA/c divided by twice the 
mass. The time rate of change of the expectation value of the energy operator is the 
power supplied to the particle by the external time-varying electromagnetic field (Yang 
1976). 
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The eigenvalue equation for the energy operator is 

%(A)4,(0 = E " ( t ) $ , ( t )  (2.8) 

where 4, is an energy eigenstate and E ,  is an energy eigenvalue characterised by the 
quantum number n. The time r is treated as a parameter in equation (2.8). Using 
equations (2.7), (2.4) and (2.3), we can make a gauge transformation on equation 
(2.8) and obtain 

%(A')4L(t) = ~ , ( t ) $ L ( f ) .  (2.9) 

Equation (2.8) is thus form invariant under gauge transformations and the energy 
eigenvalues E ,  are gauge invariant. 

2.3. Probability amplitudes 

The probability amplitude for finding the system in an eigenstate 4, of the energy 
operator at time t is 

cfl ( t )  = (3" (t)l$(t)). (2.10) 

This expression is gauge invariant, since both $ and 4, transform as in equation (2.3). 
The probability for finding the system in the state characterised by the quantum 
number n is P,(t)  = lc,(t)12. 

If equation (2.10) is differentiated with respect to time and equations (2.2) and 
(2.9) are used, the result is 

(2.11) 

As shown previously (Kobe and Smirl 1978), the matrix element in equation (2.11) 
is invariant under gauge transformations as are E ,  and c,, so equation (2.11) is also 
gauge invariant. 

3. Gauge-invariant solution to the harmonic oscillator in the magnetic dipole 
approximation 

The formulation of 8 2 is applied here to a three-dimensional isotropic harmonic 
oscillator interacting with a time-varying magnetic field in the magnetic dipole approxi- 
mation (MDA). The potentials in the MDA in different gauges are given. Then the 
energy eigenvalue problem is solved exactly in the MDA. Finally, the transitions 
induced by the time-varying magnetic field are discussed. 

3.1. Magnetic dipole approximation 

The magnetic induction field B ( t ) = B ( t ) f  is assumed to be uniform in space and 
varying in time. The direction of the field 2 is taken to be the z direction which gives 
the system cylindrical symmetry. For a magnetic induction field B ( t ) ,  a vector potential 
in the magnetic dipole approximation (MDA) is 

(3.1) 
which is the first term in the multipole expansion (Kobe 1982). The scalar potential 

A = -1 2r x B ( t ) ,  
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in general has electric dipole and quadrupole terms. We assume that the time variation 
of the magnetic field is sufficiently slow to make the effect of the electric field negligible. 
In this model any transitions and energy level perturbations arising from the matrix 
element of the scalar potential in equation (2.11) are neglected. We thus assume in 
this gauge that the scalar potential A.  = 0. 

Equation (3.1) and A .  = 0 are the potentials in the symmetric gauge in the MDA. 
Other gauges can also be used in the MDA. The vector potential in the mixed gauge 
is (Larsen 1982) 

A ’ ( t ) = - [ B ( t ) y f  +(l-t)B(t)xy^ (3.2) 

where the parameter 5 is any real number. The magnetic induction field B ( t ) =  
V x A ’ ( t )  and V - A ’ ( t ) = O .  Using equations (3.1) and (3.2) in equation (2.4), we can 
find the gauge function A which will produce a transformation from the symmetric 
gauge to the mixed gauge: 

A = (+-5)B(r)xy.  (3.3) 
Using equation (3.3) and Ao=O in equation ( 2 . 5 )  the scalar potential in the mixed 
gauge is 

(3.4) 

There are an infinite number of different gauges in the MDA because 6 in equations 
(3.2) and (3.4) is arbitrary. Special cases are 5 = 5,  which yields the symmetric gauge, 
and 5 = 1 or 0, which yields the two Landau gauges. 

Ab = (6 - i)B ( t )xy /c .  

3.2. Energy eigenvalue problem 

The eigenvalue problem in equation (2.8) can be solved exactly in any gauge. However, 
the solution is simplest in the symmetric gauge in equation (3.1) because of cylindrical 
symmetry. In this gauge the energy operator happens to be the Hamiltonian since the 
scalar potential is zero. However, if another gauge had been chosen the Hamiltonian 
and the energy operator would have been different because the scalar potential in 
equation (3.4) is not zero. Eigenvalues of the energy operator are gauge invariant 
while eigenvalues of the Hamiltonian are not. It is important to make the distinction 
between the energy operator and the Hamiltonian in an arbitrary gauge. 

For a three-dimensional isotropic harmonic oscillator of charge q, mass m and 
frequency W O ,  the potential energy is V = fmo;r2 .  The energy operator in equation 
(2.2) is 

(3.5) 
By transforming to cylindrical coordinates we can take advantage of the cylindrical 
symmetry of the system. With the energy operator in equation ( 3 . 3 ,  equation (2.8) 
becomes 

8 ( A )  = p 2 / 2 m  + &”r2 - qB (t)LZ/2mc + q2B2( t ) (x  + y 2 ) /8mc ’. 

In equation (3.6) wL is the Larmor frequency 

uL(t) = -qB(t)/2mc. (3.7) 
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(for an electron q = - e )  and 

w = ( W O  + W L )  (3.8) 2 2 1 / 2  

is the 'dressed' frequency of the oscillator in the presence of the field. 
The energy operator in equation (3.6) is the sum of two commuting parts. The 

first part is the energy operator for a one-dimensional harmonic oscillator in the z 
direction parallel to the field at the unperturbed frequency W O .  The second part is 
the energy operator for a two-dimensional oscillator perpendicular to the field at the 
field-shifted frequency w and a Zeeman term. The solution to equation (3.6) can be 
written as 

$"lF(t) = $ l (Z )$ , , (P ,  4, t ) .  (3.9) 

In equation (3.9) $1 ( 2 )  is a one-dimensional harmonic oscillator wavefunction: 

$I(z) = 2-'/2(1!)-"2(mwo/.h)''4 exp(-if2)H,(() (3.10) 

where f = (mwo/h ) ' / 2 z  and HI is a Hermite polynomial. The wavefunction q ! ~ , ~ ( p ,  4, t )  
in equation (3.9) is the solution to a two-dimensional harmonic oscillator (Landau 
and Lifshitz 1977, p 459): 

+hnF(p, 4, t )  = (mw/*h) ' / ' [n ! / (n  +Ip1)!]1/2t7'F' exp(-iq2)Lk1(T2) exp(ip4) 

where q = ( m ~ / h ) ' / ~ p  and Lk '  is an associated Laguerre polynomial. 

(3.11) 

The energy eigenvalues in equation (3.6) are (ter Haar 1964, pp 35 and 236) 

s,, lF(t)  = hwo(l + t )  + hw ( 2 n  + Ip I + 1) + hwLp (3.12) 

where the quantum numbers n ,  I ,  p can take on the values n, I = 0,1 ,2 ,  . . . and 
p = 0, f 1, f 2, . . . . There are three contributions to the energy in equation (3.12). 
The first term on the right-hand side of equation (3.12) is the energy of an unperturbed 
one-dimensional oscillator, the second term is the energy of a perturbed two- 
dimensional oscillator and the last term is a Zeeman energy. Since the Larmor 
frequency in the Zeeman term is time dependent, this model exhibits a dynamic or 
AC Zeeman effect (Gallagher and Cocker 1979). 

3.3. Probability amplitudes 

Having solved the eigenvalue equation, we can now obtain the equation of motion 
for the probability amplitudes in equation (2.10). If the eigenfunctions in equation 
(3.9) are substituted into equation (2.11), and the matrix element is evaluated, we 
obtain 
ihi,lF - ~ ~ ~ ~ c ~ ~ ~  = - iK( t ) [ (n  + l ) ( n  +IwI + I ) I ' ' ~ C ~ + ~ , ~ , ~  

+ X ( t ) [ n ( n  + Ip I ) I ' ' ~ C ~ - ~ , ~ , ~  (3.13) 
where 

K ( t )  = (hqwL( t ) /4w2( t )mc)b ( t ) .  (3.14) 

Equation (3.13) shows that there are transitions from the state ( n ,  I ,  p )  up to the state 
( n  + 1, I ,  p )  and down to the state ( n  - 1, I, p ) .  The probability of transitions depends 
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on the function K ( t )  which is proportional to the time derivative B ( t )  of the magnetic 
field. Thus for a static magnetic field there would be no transitions. 

3.4. Approximate solution 

Equation (3.13) is too difficult to solve exactly, but it can be solved approximately 
for certain special cases. As an example, we take the case where 1 = p = 0, 00 >>WL 

(weak fields) and where the field is given by 

B ( t )  =Bo sin(w1t). (3.15) 

For this case equation (3.13) becomes 

d, = -iwo(n + ~ ) c ,  +Awl sin(2wIt)(n + l ) c n + l - A w l  sin(2wlt)ncn-l 

where 

(3.16) 3 

A = ( q ~ ~ / 4 w o m c ) ~  (3.17) 

and we have set cn = C,OO. 

Equation (3.16) can be solved approximately using time-dependent perturbation 
theory, We assume that the system is in the ground state at time zero, so c,(O) = 8,". 
If second-order perturbation theory is used, the system cannot be excited above the 
second excited state, so the higher excited states are unoccupied. In second order the 
probability amplitude in the rotating wave approximation (Sargent et a1 1974, p 18) is 

c o ( t ) =  1+[hw1/2(2wl-wo)]* (exp[i(2w1-wo)t]-l)+. . . (3.18) 

for the ground state, 

cl(?) = [Aw1/2 (2w l -wo) ] (exp [ - i (2w1-wo) t ] -  I ) + .  . . (3.19) 

for the first excited state and 

c2( t ) = [Aw / 2(2w - wO)]'( 2 - 2 exp[ - i(2w 1 - w o ) l ]  + exp[ - 2i(2w - w o)t ] - 1) + . . . . 
(3.20) 

for the second excited state. We have omitted 'secular' terms (Langhoff et a1 
1972) which arise from the expansion of a time-dependent phase factor 
exp{ -i[A2u:t/4(2wl - w O ) ] } .  Since a phase factor does not change the probability 
/c,12, such secular terms do not contribute to the overall probability of a state being 
occupied. 

For the values A = 0.01, w1 = 55  rad s-' and w o  = 109 rad s-', the probability of 
finding the oscillator in the states n = 0, 1, and 2 as a function of time is shown in 
figure 1. The system begins in the ground state and the excited states become populated 
as the ground state is depleted. The system then returns to its ground state as the 
excited states are depleted. Since this behaviour is periodic, it is reminiscent of Rabi 
flopping (Sargent et a1 1974, pp 25-7). 

Because we have only gone to second order in perturbation theory, the sum of 
the probabilities of the three occupied states is not exactly one (Merzbacher 1970, 
p 4181, but 1 + g 4 F ( t )  where g = hw1/2(2w1 - - W O )  and F ( t )  is a function of time. For 
the parameters chosen the value of the sum varies in time from 1 to 1.14. Having 
analysed the system using the gauge-invariant formulation, we shall now consider the 
conventional approach, 
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I n=O 

1 

0 c 0 5  1 0  

(2W1-W 0 )  f / 2 R  

Figure 1. A plot of probability lc,(f)1* as a function of (2wl  -wo)t/27r for n = 0, 1 and 2. 

4. Conventional approach 

In this section we review the conventional approach to the interaction of electromag- 
netic radiation and matter (Schiff 1968 (pp 398-403), Merzbacher 1970 (pp 458-63)). 
In the conventional approach the quadratic term in equation (2.1) is expanded and 
the Schrodinger equation becomes 

(Ho + V(t ) )$  = iha$/at. 

V ( t )  = -(q/2mc)(A * p  + p  *A)+qZAz/2mc2+qAo.  

(4.1) 

The perturbation term V( t )  contains the time-dependent potentials 

(4.2) 

The unperturbed Hamiltonian HO is 

Ho =p2/2m + V (4.3) 

H o ~ ,  = endn (4.4) 

which satisfies the eigenvalue equation 

with eigenfunction 4" and eigenvalue e,. Perturbation theory or other methods can 
be used to solve equation (4.1) for $. To find the probability that the system is in an 
energy eigenstate while the magnetic field remains on, the energy eigenvalue problem 
in equation (2.8) must be solved and the wavefunction (/I used in equation (2.10) for 
the probability amplitude. This approach is the correct one to use while the vector 
potential is non-zero, since then there is a difference between the energy operator 
and Ho in equation (4.3). 

A common misunderstanding of the conventional approach is to interpret the 
squared modulus of the amplitude 

afl = (4, I4 ( t ) )  (4.5) 
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as the probability of finding the particle in an energy eigenstate at time t. When the 
magnetic field is present at time t, la,(t)1* is not the probability that the particle is in 
an energy eigenstate, because Ho is not the appropriate energy operator for the 
particle. If, however, the magnetic field were switched off and a gauge in which the 
potential is zero were used, the energy operator in equation (2.7) would reduce to 
Ho in equation (4.3). In this case equations (2.10) and (4.5) would be equal (Leubner 
and Zoller 1980). It is essential to use the appropriate energy eigenstate at time t. 
The absolute value squared of equation (2.10) gives the correct probability at all times 
that the particle is in an energy eigenstate. 

The equation for the conventional amplitude a,  can be obtained by taking the 
time derivative of equation (4.5) and using equation (4,1), which gives 

(4.6) 

The matrix element in equation (4.6) is gauge dependent since it contains the gauge- 
dependent potentials. In general, therefore, the amplitudes a,  are gauge dependent 
and cannot be valid probability amplitudes for finding the system in an energy 
eigenstate. 

5. Conventional solution to the harmonic oscillator in the magnetic dipole 
approximation 

The conventional approach of 8 4 is now applied to the charged harmonic oscillator 
in the magnetic dipole approximation (MDA). Calculations are first made using the 
symmetric gauge and compared with the gauge-invariant calculations of 8 3. Then 
the mixed gauge is used to demonstrate the gauge dependence of the conventional 
approach. 

5.1, Energy eigenvalue problem 

The eigenvalue problem for the unperturbed Hamiltonian Ho is the same in any gauge. 
For a three-dimensional isotropic harmonic oscillator of charge q, mass m and 
frequency wo, in cylindrical coordinates, equation (4.4) becomes 

(5.1) 
Comparing equation (5.1) with equation (3.6) we see that the equations are similar 
except for the Zeeman term in equation (3.6) and the frequency w in equation (3.6) 
for the two-dimensional oscillator instead of W O  in equation (5.1). The solutions of 
equation (5.1) are the product of equations (3.10) and (3.11) with o replaced by 00 
in equation (3.11). The energy eigenvalue e,[, in equation (5.1) is 

enf ,  = hoo( l  + t )  + hoo(2n + / p  I + 1) (5.2) 

where the quantum numbers take on the values I ,  n = 0,1,2 , . . and p = 0, f 1, f 2 . . . . 
The two contributions to the energy are from the unperturbed one-dimensional 



530 P K Kennedy and D H Kobe 

oscillator parallel to the field and the unperturbed two-dimensional oscillator perpen- 
dicular to the field. The Zeeman term in equation (3.12) is not present in equation (5.2).  

5.2. Amplitudes in the symmetric gauge 

We now turn to the solution of equation (4.6) for the conventional amplitudes. The 
vector potential in the symmetric gauge in equation (3.1) is 

A =ipPB(t)r$ (5.3) 

in cylindrical coordinates. The scalar potential A .  is zero. When these potentials are 
used in equation (4.2), the perturbation V ( t )  in the symmetric gauge is 

Vir) = +mwtp2-ihWLa/a4. (5.4) 

With the unperturbed wavefunction q5,,lr and equation (5.4) the matrix elements in 
equation (4.6) can be evaluated. The resulting equation for the conventional ampli- 
tudes a,[, is 

( 5 . 5 )  ihu,l, - en[,anfw = anlwL[~ ~ w L +  (2n + IF I + l)hwt/2wOI. 

If a 'dressed' eigenvalue e',,,,(t) is defined as 

e',f,(t) = +i) + (2n + Ip I + l ) h w o ( ~  + w t / 2 w i )  + p h w L  (5.6) 

we can write equation ( 5 . 5 )  as 

ihu,,[, -e'nl,(r)unl, = 0. (5.7) 

Equation (5.7) can be easily solved to give 

the squared modulus of which is time independent. If we interpret the conventional 
amplitude as a probability amplitude, equation (5.8) predicts no transitions. This 
behaviour is quite different from the solution for the gauge-invariant probability 
amplitude in equation (3.13). 

( t )  in equation (3.12) from the gauge-invariant formulation is 
not the same as e',,,(t) in equation (5.6). The frequency w in equation (3.8) can be 
written as w o ( l  + w ~ / w o )  . For the weak-field case the square root can be expanded 
and the first two terms give w o ( l + w t / 2 w i ) ,  which is what occurs in equation (5.6).  

In order to compare the gauge-invariant energy & , I ,  and the dressed energy e',rw, 
their time average was calculated numerically for I = F = n  = 1. In figure 2 the 
time-averaged energies are plotted against the magnetic field magnitude Bo in units 
of (e/2mcwo)-', where e is the magnitude of the charge on the electron. For weak 
fields w 0 ) ,  the two energies are the same because the square root in equation 
(3.8) may be expanded to give the next to the last term in equation (5.6). At high 
fields, however, they differ significantly. The instantaneous energy can be measured 
if the duration of the measurement is small compared with the period of the field. A 
comparison of the instantaneous energies E , , f w ( t )  and E , f w ( t )  yields a figure similar to 
figure 2. 

The eigenvalue 

2 1/2  
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0 2 4 
eB,  / ’2mcwo 

Figure 2. A plot of the time-averaged energies (CIL1) (A) and ( E ~ ~ ~ ) ( B )  for n = 1 = p = 1 
as a function of eBo/2mcoo, where Bo is the amplitude of the sinusoidal magnetic field. 
The intercept at Bo = 0 is $ h ~ o .  

5.3. Amplitudes in the mixed gauge 

The amplitude in the mixed gauge is 

a Lljl = (4dI.L 19’0)) (5.9) 

where the mixed gauge wavefunction 4’ is given in equation (2.3) in terms of the 
symmetric gauge wavefunction 4 and the gauge function A given in equation (3.3). 
The amplitude ukljl is thus 

aL!,, = ( 4 n r I . L I e x ~ [ i q ( 1 - 5 ) ~ ( t ) x ~ / h c I ~ ( t ) ) ,  (5.10) 

which reduces to the amplitude anlW = (c$,,lW14(t)) only when 6 = $. These conventional 
amplitudes and the corresponding ‘probabilities’ are thus gauge dependent. 

The equation satisfied by the amplitudes in equation (5.9) is obtained by using the 
vector and scalar potentials in the mixed gauge in equations (3.2) and (3.4), respec- 
tively, in equation (4.6). In general transitions are predicted between unperturbed 
states unless 6 = 1. The ‘probability’ of transitions using eigenstates of the unperturbed 
Hamiltonian is not only gauge dependent, but different in all gauges from the correct 
gauge-invariant probability using energy eigenstates. Use of the conventional ampli- 
tude as a probability amplitude for an energy eigenstate is, in this case, incorrect in 
all gauges and can lead to incorrect conclusions. 

6. Conclusions 

The three-dimensional charged isotropic harmonic oscillator in a time-varying mag- 
netic field in the magnetic dipole approximation (MDA) is solved using a manifestly 
gauge-invariant formulation of quantum mechanics. The gauge-invariant formulation 
is based on the gauge-invariant energy operator which corresponds to the physically 
observable energy. It yields instantaneous eigenvalues which are ‘dressed’ by the field 
and state probabilities which are gauge invariant. 
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The conventional approach to this problem uses eigenstates of the unperturbed 
Hamiltonian. When these eigenstates are used to calculate amplitudes, the correspond- 
ing ‘state probabilities’ are gauge dependent and different in all gauges from the 
correct gauge-invariant energy eigenstate probabilities. Since the magnetic field 
remains on, these ‘state probabilities’ are not physically meaningful. 

In the adiabatic approximation the eigenvalue problem for the total Hamiltonian 
is solved (Schiff 1968, pp 289-90). In an arbitrary gauge, the eigenvalues of the total 
Hamiltonian depend on the gauge. The amplitudes calculated from the eigenstates 
of the total Hamiltonian are also gauge dependent and give gauge-dependent ‘state 
probabilities’. These eigenvalues and amplitudes are in general meaningless since the 
total Hamiltonian is not in general the energy operator. For a gauge, like the symmetric 
gauge in the MDA, in which the scalar potential is zero, the Hamiltonian reduces to 
the energy operator and correct eigenvalues and amplitudes are obtained. In the case 
of the harmonic oscillator in 0 3, equation (3.5) is also the total Hamiltonian because 
the symmetric gauge is used. In general the gauge-invariant approach is different 
from the adiabatic approximation and the assumption that the field is slowly varying 
does not have to be made. 

For problems in which a time-varying electromagnetic field is present, there is a 
distinction between the energy operator and the Hamiltonian. A quantum-mechanical 
operator which corresponds to a classical observable must be gauge invariant in 
addition to  being Hermitian. A gauge-invariant operator is one with a gauge-invariant 
expectation value. The expectation values of the Hamiltonian and the unperturbed 
Hamiltonian are gauge dependent (Kobe and Yang 1980). The energy operator in 
equation (2 .7 )  is Hermitian, gauge invariant and has the same form as the classical 
energy (Kobe 1981). It also satisfies the condition that the time rate of change of its 
expectation value is equal to the power which the electromagnetic field supplies to 
the particle. There are indeed some gauges in which the energy operator is equal to 
the Hamiltonian (or the unperturbed Hamiltonian). For example, in a gauge in which 
the scalar potential is zero the Hamiltonian reduces to the energy operator. However, 
an experiment designed to measure energy differences measures differences in the 
eigenvalues of the energy operator. Transitions between energy eigenstates must also 
be calculated using eigenstates of the energy operator. Eigenstates of the Hamiltonian 
(or unperturbed Hamiltonian) should not be used in general to calculate the probability 
that the particle is in an energy eigenstate. 
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